
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 13 – Lists (cont)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• Modularity

– Meaning

– Benefits

• Program design

– Top Down Design

– Top Down Implementation

– Bottom Up Implementation

2

String Slicing

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To review what we know about lists already

• To learn more about lists in Python

• To understand two-dimensional lists

– (And more dimensions!)

• To practice passing lists to functions

• To learn about mutability and its uses

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

List Review

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Vital List Algorithm: Iterating

• Write the code to iterate over and print out the
contents of a list called classNames

index = 0

while index < len(classNames):

print(classNames[index])

index += 1

6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted7

Two-Dimensional Lists

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Two-Dimensional Lists

• Lists can hold any type (int, string, float, etc.)

– This means they can also hold another list

• We’ve looked at lists as being one-dimensional

–But lists can also be two-
(or three- or four- or five-, etc.)
dimensional!

8

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Two-Dimensional Lists: Syntax

• We use square brackets to indicate lists

– 2D lists are essentially a list of lists

– What do you think the syntax will look like?

twoD = [["first", "row"], ["second",

"row"], ["last", "row"]]

twoD = [["first", "row"],

["second", "row"],

["last", "row"]]

9

Same code,
just lined up
to be more

readable

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Two-Dimensional Lists: A Grid

• It may help to think of 2D lists as a grid

twoD = [[1,2,3], [4,5,6], [7,8,9]]

10

1 2 3

4 5 6

7 8 9

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Two-Dimensional Lists: A Grid
• You access an element by the index of

its row, and then the column

–Remember – indexing starts at 0!

11

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Two-Dimensional Lists: A Grid
• You access an element by the index of

its row, and then the column

–Remember – indexing starts at 0!

12

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

index: [0][2]

index: [1][0]

index: [2][1] index: [2][2]

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Lists of Strings

• Remember, a string is like a list of characters

• So what is a list of strings?

– Like a two-dimensional list!

• We have the index of the string (the row)

• And the index of the character (the column)

13

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Lists of Strings

• Lists in Python don’t have to be rectangular

– They can be jagged (rows of different lengths)

• Anything we could do
with a one-dimensional
list, we can do with a
two-dimensional list

– Slicing, index, appending

14

0 1 2 3 4

0 A l i c e

1 B o b

2 E v a n

names

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Vital List Algorithm: 2D Creating

• Write the code to create a 2D list of symbols
called gameBoard, given width and height

gameBoard = []

while len(gameBoard) < height:

boardRow = []

while len(boardRow) < width:

boardRow.append(".")

gameBoard.append(boardRow)

15

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Vital List Algorithm: 2D Iterating

• Write the code to iterate over and print out the
contents of a 2D list called gameBoard

row = 0

while row < len(gameBoard):

col = 0

while col < len(gameBoard[row]):

print(gameBoard[row][col], end = " ")

col += 1

print() # print a newline at end of each row

row += 1

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted17

Mutability

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Mutable and Immutable

• In Python, certain structures cannot be altered
once they are created and are called immutable

– These include integers, Booleans, and strings

• Other structures can be altered after
they are created and are called mutable

– This includes lists

18

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Mutability Example

• Do the variables change in the code below?

myList.append("dog")

– Yes, the list is updated in place to include “dog”

myString.upper()

– No, the string does not change to uppercase

– Must use = to actually change myString

• myString = myString.upper()

19

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Lists and Mutability

• When you assign one list to another, it is
by default a shallow copy of the list

• Any “in place” changes that are made to the
shallow copy show up in the “original” list

• Sort of like a nickname: one variable can be
accessed with two separate names

• The other option is a deep copy of the list, but
you must specify this is what you want

20

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Shallow and Deep Copies

• A shallow copy is when the new variable
only points to the old variable, rather than
making an actual complete copy

• A deep copy is the opposite, creating a
complete copy of the list for the new variable

• Both of these are useful in their own way

– They serve different purposes

– One is not “better” than the other
21

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Shallow Copy Example

• A shallow copy and its effects on the original:

list1 = ["red", "blue"]

list2 = list1

list2.append("green")

list2[1] = "yellow"

print("original: ", list1)

print("shallow copy: ", list2)

22

original: ['red', 'yellow', 'green']

shallow copy: ['red', 'yellow', 'green']

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Shallow Copy

• When we make a shallow copy, we are
essentially just giving the same list two
different variable names

– They both reference the same place in memory

23

list1

list2

["red", "blue"]

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Deep Copy

• There are two easy ways to do a deep copy:

– Use slicing, and “slice” out the entire list
newList = originalList[:]

– Cast the original as a list when assigning
newList = list(originalList)

• With these, Python returns a separate copy
that it then assigns to the new variable

–Now we have two separate, independent lists!

24

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Deep Copy Example
list1 = ["red", "blue"]

list2 = list1[:] # use slicing to copy

list2[1] = "yellow"

list3 = list(list1) # use casting to copy

list3.append("purple")

print("original: ", list1)

print("deep copy1: ", list2)

print("deep copy2: ", list3)

25

original: ['red', 'blue']

deep copy1: ['red', 'yellow']

deep copy2: ['red', 'blue', 'purple']

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Deep Copy

• Creates a copy of the entire list’s contents, not
just of the list itself

• Each variable now has its own individual list

26

list1

list2

["red", "blue"]

["red", "yellow"]

["red", "blue", "purple"]list3

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted27

Mutability and Functions

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Python Is “Lazy”

• Lists can be a lot bigger than Booleans,
integers, or even strings!

• When we pass a list as an argument, Python
doesn’t want to copy all of the values

– Copying can take a lot of memory and time

• Instead of the values, when we pass a list,
Python actually sends a reference to the list

28

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Lists, Functions, and Mutability

• When arguments are passed to a function,
their value is assigned to the formal
parameters using the assignment operator

• With a list, we send a reference, not the value

• So does the function have a deep copy?

–No, it has a shallow copy!

– It’s a reference to the original list

29

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

References

• A reference essentially states where the
list is stored in the computer’s memory

– Mutable objects are always passed by reference

• Since lists are mutable, that means that the
function the list was passed to now has direct
access to the “original” list

– And can change its contents!!!

30

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• main() has a list called myList

31

myList

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• main() has a list called myList

• Instead of copying over all of
the values stored in myList,
Python will instead pass a
reference to newFxn()

32

myList

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• main() has a list called myList

• Instead of copying over all of
the values stored in myList,
Python will instead pass a
reference to newFxn()

• And now newFxn()
has direct access to the
actual contents of myList

33

myList

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Mutability in Functions

• When a parameter is passed that is mutable,
it is now possible for the second function to
directly access and change the contents

• This only works if we change the variable
“in place” – assigning a new overall value to
the variable will override the mutability

– Any “in place” changes that are made to the
shallow copy show up in the “original” list

34

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Scope and Mutability in Functions

• A good general rule for if a change is “in place”:

• When you use something like .append()

on the list, that’s an “in place” change

• When you use the assignment operator, then
that’s not an “in place” change

– Unless you are editing one element: myList[2]

35

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Scope and Mutability in Functions

36

Function is called, and formal parameter F
is assigned the argument A

A is immutable
(integer, string)

A is mutable
(lists)

A doesn’t change
If F changes

F is assigned to
something else
F = [0, 1]

F = "hello"

F is modified
in place

F.append(2)

F[0] = 17

A doesn’t change
If F changes

A changes
If F changes

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Using Mutability

• Shallow copies are not a bad thing!

• Being able to

–Pass a list to a function

–Have that function make in place changes

–And have those changes “stick”

• Can be very useful!

37

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted38

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Cloning and Adopting Dogs

• Write a program that contains the following:

• A main() with a list of dogs at an adoption event

– Use deep copy to “clone” the dogs by creating a
second, unique list

• An adopt() function that takes in a list of dogs,
and replaces all of their names with “adopted!”

– These changes should “stick” in main() as well,
without the function returning anything

39

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• CTRL+L

– Centers the screen on the cursor’s location

• Use the shortcut again to “move” the
screen so the cursor’s at the top

– Use it a third time to move it to the bottom

– Once more will cycle it back to the center

40

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• Project 1 is out on Blackboard now

– Design is due by Friday (Mar 29th) at 11:59:59 PM

• Design is provided, but you must still think about it
carefully to figure out how everything fits together!

– Project is due by Friday (Apr 5th) at 11:59:59 PM

• Second midterm exam is April 15th and 16th

41

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• Tesseract:

– https://commons.wikimedia.org/wiki/File:Tesseract.gif

• Cardboard box:
– https://pixabay.com/p-220256/

• Wooden ship (adapted from):
– https://pixabay.com/p-307603/

• Coconut island (adapted from):
– https://pixabay.com/p-1892861/

42

