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CMSC201
Computer Science I for Majors

Lecture 13 – Lists (cont)
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Last Class We Covered

• Modularity

– Meaning

– Benefits

• Program design

– Top Down Design

– Top Down Implementation

– Bottom Up Implementation
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String Slicing
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Any Questions from Last Time?
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Today’s Objectives

• To review what we know about lists already

• To learn more about lists in Python

• To understand two-dimensional lists

– (And more dimensions!)

• To practice passing lists to functions

• To learn about mutability and its uses

4
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List Review



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Vital List Algorithm: Iterating

• Write the code to iterate over and print out  the 
contents of a list called classNames

index = 0

while index < len(classNames):

print( classNames[index] )

index += 1

6
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Two-Dimensional Lists
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Two-Dimensional Lists

• Lists can hold any type (int, string, float, etc.)

– This means they can also hold another list

• We’ve looked at lists as being one-dimensional

–But lists can also be two-
(or three- or four- or five-, etc.) 
dimensional!

8
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Two-Dimensional Lists: Syntax

• We use square brackets to indicate lists

– 2D lists are essentially a list of lists

– What do you think the syntax will look like?

twoD = [ ["first", "row"], ["second", 

"row"], ["last", "row"] ]

twoD = [ ["first",  "row"], 

["second", "row"], 

["last", "row"] ]

9

Same code, 
just lined up 
to be more 

readable
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Two-Dimensional Lists: A Grid

• It may help to think of 2D lists as a grid

twoD = [ [1,2,3], [4,5,6], [7,8,9] ]

10

1 2 3

4 5 6

7 8 9
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Two-Dimensional Lists: A Grid
• You access an element by the index of 

its row, and then the column

–Remember – indexing starts at 0!

11

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9
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Two-Dimensional Lists: A Grid
• You access an element by the index of 

its row, and then the column

–Remember – indexing starts at 0!

12

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

index: [0][2]

index: [1][0]

index: [2][1] index: [2][2]
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Lists of Strings

• Remember, a string is like a list of characters

• So what is a list of strings?

– Like a two-dimensional list!

• We have the index of the string (the row)

• And the index of the character (the column)

13
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Lists of Strings

• Lists in Python don’t have to be rectangular

– They can be jagged (rows of different lengths)

• Anything we could do 
with a one-dimensional
list, we can do with a 
two-dimensional list

– Slicing, index, appending

14

0 1 2 3 4

0 A l i c e

1 B o b

2 E v a n

names
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Vital List Algorithm: 2D Creating

• Write the code to create a 2D list of symbols 
called gameBoard, given width and height

gameBoard = []

while len(gameBoard) < height:

boardRow = []

while len(boardRow) < width:

boardRow.append(".")

gameBoard.append(boardRow)

15
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Vital List Algorithm: 2D Iterating

• Write the code to iterate over and print out  the 
contents of a 2D list called gameBoard

row = 0

while row < len(gameBoard):

col = 0

while col < len( gameBoard[row] ):

print( gameBoard[row][col], end = " ")

col += 1

print()  # print a newline at end of each row

row += 1

16
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Mutability
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Mutable and Immutable

• In Python, certain structures cannot be altered 
once they are created and are called immutable

– These include integers, Booleans, and strings

• Other structures can be altered after 
they are created and are called mutable

– This includes lists

18
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Mutability Example

• Do the variables change in the code below?

myList.append("dog")

– Yes, the list is updated in place to include “dog”

myString.upper()

– No, the string does not change to uppercase

– Must use = to actually change myString

• myString = myString.upper()

19
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Lists and Mutability

• When you assign one list to another, it is 
by default a shallow copy of the list

• Any “in place” changes that are made to the 
shallow copy show up in the “original” list

• Sort of like a nickname: one variable can be 
accessed with two separate names

• The other option is a deep copy of the list, but 
you must specify this is what you want

20
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Shallow and Deep Copies

• A shallow copy is when the new variable 
only points to the old variable, rather than 
making an actual complete copy

• A deep copy is the opposite, creating a 
complete copy of the list for the new variable

• Both of these are useful in their own way

– They serve different purposes

– One is not “better” than the other
21
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Shallow Copy Example

• A shallow copy and its effects on the original:

list1 = ["red", "blue"]

list2 = list1

list2.append("green")

list2[1] = "yellow"

print("original:     ", list1)

print("shallow copy: ", list2)

22

original:      ['red', 'yellow', 'green']

shallow copy:  ['red', 'yellow', 'green']
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Shallow Copy

• When we make a shallow copy, we are 
essentially just giving the same list two 
different variable names

– They both reference the same place in memory

23

list1

list2

["red", "blue"]



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Deep Copy

• There are two easy ways to do a deep copy:

– Use slicing, and “slice” out the entire list
newList = originalList[ : ]

– Cast the original as a list when assigning
newList = list(originalList)

• With these, Python returns a separate copy 
that it then assigns to the new variable

–Now we have two separate, independent lists!

24
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Deep Copy Example
list1 = ["red", "blue"]

list2 = list1[:]        # use slicing to copy

list2[1] = "yellow"

list3 = list(list1)     # use casting to copy

list3.append("purple")

print("original:     ", list1)

print("deep copy1:   ", list2)

print("deep copy2:   ", list3)

25

original:      ['red', 'blue']

deep copy1:    ['red', 'yellow']

deep copy2:    ['red', 'blue', 'purple']
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Deep Copy

• Creates a copy of the entire list’s contents, not 
just of the list itself

• Each variable now has its own individual list

26

list1

list2

["red", "blue"]

["red", "yellow"]

["red", "blue", "purple"]list3
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Mutability and Functions
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Python Is “Lazy”

• Lists can be a lot bigger than Booleans,
integers, or even strings!

• When we pass a list as an argument, Python 
doesn’t want to copy all of the values

– Copying can take a lot of memory and time

• Instead of the values, when we pass a list, 
Python actually sends a reference to the list

28
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Lists, Functions, and Mutability

• When arguments are passed to a function, 
their value is assigned to the formal 
parameters using the assignment operator

• With a list, we send a reference, not the value

• So does the function have a deep copy?

–No, it has a shallow copy!

– It’s a reference to the original list

29
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References

• A reference essentially states where the 
list is stored in the computer’s memory

– Mutable objects are always passed by reference

• Since lists are mutable, that means that the 
function the list was passed to now has direct 
access to the “original” list

– And can change its contents!!!

30
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• main() has a list called myList

31

myList
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• main() has a list called myList

• Instead of copying over all of 
the values stored in myList, 
Python will instead pass a 
reference to newFxn()

32

myList
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• main() has a list called myList

• Instead of copying over all of 
the values stored in myList, 
Python will instead pass a 
reference to newFxn()

• And now newFxn()
has direct access to the
actual contents of myList

33

myList
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Mutability in Functions

• When a parameter is passed that is mutable, 
it is now possible for the second function to 
directly access and change the contents

• This only works if we change the variable 
“in place” – assigning a new overall value to 
the variable will override the mutability

– Any “in place” changes that are made to the 
shallow copy show up in the “original” list

34
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Scope and Mutability in Functions

• A good general rule for if a change is “in place”:

• When you use something like .append() 

on the list, that’s an “in place” change

• When you use the assignment operator, then 
that’s not an “in place” change

– Unless you are editing one element: myList[2]

35
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Scope and Mutability in Functions

36

Function is called, and formal parameter F
is assigned the argument A

A is immutable
(integer, string)

A is mutable
(lists)

A doesn’t change
If F changes

F is assigned to 
something else
F = [0, 1]

F = "hello"

F is modified 
in place

F.append(2)

F[0] = 17

A doesn’t change
If F changes

A changes
If F changes
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Using Mutability

• Shallow copies are not a bad thing!

• Being able to 

–Pass a list to a function

–Have that function make in place changes

–And have those changes “stick”

• Can be very useful!

37
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Cloning and Adopting Dogs

• Write a program that contains the following:

• A main() with a list of dogs at an adoption event

– Use deep copy to “clone” the dogs by creating a 
second, unique list

• An adopt() function that takes in a list of dogs, 
and replaces all of their names with “adopted!”

– These changes should “stick” in main() as well, 
without the function returning anything

39
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• CTRL+L

– Centers the screen on the cursor’s location

• Use the shortcut again to “move” the 
screen so the cursor’s at the top

– Use it a third time to move it to the bottom

– Once more will cycle it back to the center

40
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Announcements

• Project 1 is out on Blackboard now

– Design is due by Friday (Mar 29th) at 11:59:59 PM

• Design is provided, but you must still think about it 
carefully to figure out how everything fits together!

– Project is due by Friday (Apr 5th) at 11:59:59 PM

• Second midterm exam is April 15th and 16th

41
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Image Sources
• Tesseract:

– https://commons.wikimedia.org/wiki/File:Tesseract.gif

• Cardboard box:
– https://pixabay.com/p-220256/

• Wooden ship (adapted from):
– https://pixabay.com/p-307603/

• Coconut island (adapted from):
– https://pixabay.com/p-1892861/
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